A modified alternating positive semidefinite splitting preconditioner for block three-by-three saddle point problems
نویسندگان
چکیده
We propose a modified alternating positive semidefinite splitting (MAPSS) preconditioner for solving block three-by-three saddle point problems that arise in linear programming and the finite element discretization of Maxwell equations. Spectral properties MAPSS-preconditioned matrix are discussed analyzed detail. As efficiency MAPSS depends on its parameters, we derive fast effective formulas to compute quasi-optimal values these parameters. Numerical examples show performs better than APSS preconditioner.
منابع مشابه
A Parameterized Splitting Preconditioner for Generalized Saddle Point Problems
By using Sherman-Morrison-Woodbury formula, we introduce a preconditioner based on parameterized splitting idea for generalized saddle point problems which may be singular and nonsymmetric. By analyzing the eigenvalues of the preconditioned matrix, we find that when α is big enough, it has an eigenvalue at 1 with multiplicity at least n, and the remaining eigenvalues are all located in a unit c...
متن کاملOn the generalized shift-splitting preconditioner for saddle point problems
In this paper, the generalized shift-splitting preconditioner is implemented for saddle point problems with symmetric positive definite (1,1)-block and symmetric positive semidefinite (2,2)-block. The proposed preconditioner is extracted form a stationary iterative method which is unconditionally convergent. Moreover, a relaxed version of the proposed preconditioner is presented and some proper...
متن کاملA BDDC Preconditioner for Saddle Point Problems
The purpose of this paper is to extend the BDDC (balancing domain decomposition by constraints) algorithm to saddle point problems that arise when mixed finite element methods are used to approximate the system of incompressible Stokes equations. The BDDC algorithms are defined in terms of a set of primal continuity constraints, which are enforced across the interface between the subdomains, an...
متن کاملA Preconditioner for Generalized Saddle Point Problems
In this paper we consider the solution of linear systems of saddle point type by preconditioned Krylov subspace methods. A preconditioning strategy based on the symmetric/ skew-symmetric splitting of the coefficient matrix is proposed, and some useful properties of the preconditioned matrix are established. The potential of this approach is illustrated by numerical experiments with matrices fro...
متن کاملBlock alternating splitting implicit iteration methods for saddle-point problems from time-harmonic eddy current models
For the saddle-point problems arising from the finite element discretizations of the hybrid formulations of the time-harmonic eddy current problems, we establish a class of block alternating splitting implicit iteration methods and demonstrate its unconditional convergence. Experimental results are given to show the feasibility and effectiveness of this class of iterative methods when they are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Transactions on Numerical Analysis
سال: 2022
ISSN: ['1068-9613', '1097-4067']
DOI: https://doi.org/10.1553/etna_vol58s84